Cell division

Cell division

Most cell undergoes division, ie, the formation of two daughter cells identical to the parent cell. This event occurs at the end of the cell cycle, which represents the set of modifications that must be met from the moment in which a cell is formed at the moment in which it divides into two daughter cells. The division is preceded by stages in which the cell doubles its intracellular content. Based on the ability to divide, cells are divided into three categories: ( a ) cells in continuous division, as the skin cells, which have a short life and must be replaced quickly; ( b ) stable cells, ie cells that after differentiation entering a phase of rest, from which they can return to the cycle if properly stimulated (eg., hepatocytes); ( c ) perennial cells, ie cells that after differentiation out permanently from the cycle (eg., neurons).
The rate of cell division is controlled by mechanisms partially known, that allow a cell to divide only if you need more cells. Numerous specific protein factors regulate the cell cycle, such as hormones and growth factors. The cell acts as a target, thanks to the presence of recognition systems of the stimulus to the division. Normally the number of cycles of replication is related inversely to the age of the animal from which the tissue was taken. For this reason, the cells derived from embryonic tissues can replicate in vitro for a longer time compared to cells isolated from tissues of adult organisms. The cells often lose the ability to divide after a certain period of time; this period is variable for the different cell types and to human cells is approximately 50 divisions. This was demonstrated in 1961 by Leonard Hayflick and Paul S. Moorhead, who observed that human fibroblasts died after a finite number of divisions in culture.

From healthy cell to the transformed cell

Some cells derived from multicellular organisms have a capacity of unlimited division in culture and can be used for the production of cell lines. The cell line is composed of transformed cells derived from tumor tissues or cells in primary culture have been changed as a result of spontaneous mutations or induced by exposure to viruses, chemical mutagens or radiation. Keep in mind that the transformed cells have many unusual characteristics that differentiate them from healthy cells. The alterations that occur as a result of processing related to the presence of a genetic aberrant, the reduction and the alteration of the cellular skeleton ( cytoskeleton ), modifications on the cell surface about the expression of antigens, the lower adhesiveness to the substrate and then the ' increased ability to proliferate in suspension and form multiple layers in the plate. Furthermore, the transformed cells have a lower dependence on the presence of serum in the culture medium and in some cases can produce tumors if they are injected into a suitable host organism.
In 1951, George O. Gey and his colleagues cultured the first human cell line, stabilized by a biopsy of the tumor tissue of the uterine cervix taken from a patient named Henrietta Lacks. The patient died shortly afterwards but his cancer cells were maintained in culture until today. These cells were called HeLa in their name and are currently used in many laboratories. We can obtain continuous cell lines through the introduction in normal cells of specific genes ( oncogenes ) by viral infection. If the tumor virus is added to the culture medium appear in a short time, small colonies of transformed cells that proliferate abnormally.

How to prepare a cell culture

How to prepare a cell culture

The first stage in the preparation of a cell culture consists in isolating the desired population of cells from a tissue fragment; in an initial mechanical disaggregation of the tissue is followed by enzymatic digestion, to degrade the extracellular matrix that surrounds and holds the cells together. The resulting cell population is heterogeneous, but using selective media or by separating the cells based on the molecules expressed on the cytoplasmic membrane (antigens), it is possible to isolate specific cell populations. The isolated cells are then grown in an appropriate culture medium; these proliferate and reached confluence, can be detached and moved to another container to keep them in constant division. The cells can be grown to high density (mass culture) or low density (clonal culture), giving rise to the formation of single colonies.

The culture of plant cells

The culture of plant cells

The techniques for the cultivation of plant cells were developed in the fifties of the twentieth century., When he began to realize that the crops have the potential to produce a wide range of molecules useful in various areas, and currently many types of plant cells can be grown in test tubes. Plant cells are surrounded by a cell wall rather rigid, consisting mainly of cellulose, which gives them a mechanical support, the shape and a permeability barrier. To them we must cultivate the cells treated with an enzyme called 'cellulase', which degrades the cellulose wall of the cell releasing 'naked', also called 'protoplast'. Protoplasts are grown in a culture medium with defined chemical composition, which supports the growth and division. The soil must contain between ingredients also plant hormones, such as auxins, essential for cell division . The cultured cells multiply and form a mass of undifferentiated cells said 'callus', from which, by appropriate stimulation, can originate roots, stalks, leaves and even a whole plant. The pharmaceutical industry uses vegetable crops in the production of anti-cancer drugs, anti-inflammatory, antibacterial; the agricultural sector for the production of pesticides; the food industry with regard to the synthesis of additives (eg., dyes).

How to feed the cells in Tissue culture

 feed the cells in Tissue culture

In the living cells remain viable thanks to the contribution of nutrients, guaranteed by the vascular system and, via the capillary network, nourishes the tissue at the cellular level and removes waste products derived from cellular metabolism . In vitro functions vascular vicariate are from the culture medium, a liquid medium highly nutritious. It consists of basic substances, such as glucose, amino acids, vitamins, minerals and trace elements present, necessary for the normal physiological functions of the cell, and from animal serum (usually fetal bovine serum), which supports the growth and proliferation phone. The whey is in most cases used at a concentration of 5 to 20% and contains growth factors, such as platelet growth factor (PDGF), epidermal growth factor (EGF), insulin-like growth factors (IGF) , hormones (eg., insulin), lipids (fatty acids, phospholipids, lecithin and cholesterol) are important as a source of energy and for the synthesis of the plasma membrane and adhesive factors, such as fibronectin and vitronectin, transferrin, important for the metabolism of iron, and albumin, capable of transporting vitamins and lipids. The cells should be fed regularly under aseptic conditions to ensure its viability. Normal cells adhere to surfaces of glass or plastic treated and proliferate to form a confluent monolayer that completely covers the surface of the container (petri dish or flask). To ensure the maintenance of the cells in a microenvironment similar to native cells in the laboratory are kept in incubator at 37 ° C with controlled atmosphere (95% air, 5% CO 2 ), which enables it to maintain the proper pH phone. Depending on the tissue of origin, the cells may require the addition to the culture medium of specific factors, in order to maintain the same degree of proliferation and differentiation.

Cultured cells and tissues

Cultured cells and tissues

The cell culture techniques have allowed to study the behavior of cells outside of the living organism in artificial conditions which reproduce, as faithfully as possible, the microenvironment of the tissue or organ from which they derive. The experiments performed on cultured cells are defined in vitro to distinguish them from those in vivo that are executed on the living organism. The tissue culture and cell phones affect many areas of scientific research. Among the possible applications are: the study of the regulation of cell life and response to external stimuli under controlled conditions; the verification of the effect of various chemical compounds and drugs on specific cell types (eg,., tumor cells); the study of the use of cells for the generation of tissue in the test tube (eg., artificial skin); the synthesis of organic products on a large scale (eg,., therapeutic proteins). There have been numerous milestones in the history of the development of cell cultures and tissues.
The first experiment in tissue culture dates back to 1907, when Ross Harrison (1870-1959) of Yale University withdrew a small piece of tissue from the spinal cord of a frog embryo and laid him in a clot of sap. The observation of the tissue under a microscope for several days allowed Harrison to find out that the nerve cells were maintained viable in the medium used. A short time later, Alexis Carrel (1873-1944), Nobel Prize in 1912 for medicine and physiology and considered one of the pioneers in the history of the cell cultures, showed that they could keep the cells outside the body under sterile conditions . In the fifties Harry Eagle gave a major boost to this area of ​​research by studying the necessary nutrients to the cells in culture. Proved fact that animal cells could grow in a cocktail of substances in the chemical composition defined in the presence of serum. Cell cultures have been and still are a very useful tool for the development of vaccines. In 1949 it was shown that the poliovirus could grow in cultures of human cells. The polio vaccine virus deactivated became one of the first commercial products of crops animals. Another milestone in the technology of the cell cultures was placed in 1975 with the development of a technique for the production of hybrid cells, including cells capable of producing antibodies, macromolecules that have an important value for both diagnostic for therapy.
The knowledge and techniques in the field of cell cultures accumulated over time allow us today to cultivate in the laboratory many cell types. From a small fragment of tissue is possible to isolate, through specific procedures, individual cells kept viable thanks to the contribution of nutrients provided by the culture medium. Thanks to the process of division, in culture the cells are able to replicate rise to new cells identical to the parent cell for a defined number of times. In addition, under the influence of appropriate stimuli, may undergo differentiation, namely the assumption of a specific shape and function. Because of this property it is possible today to propose cell cultures as a tool for regeneration of artificial tissues that can be used in the context of new therapeutic strategies. In appropriate experimental conditions the cells may undergo a transformation process that involves a series of changes at the expense of the nucleus and the cytoplasm, altering their normal properties and in some cases making them look like cancer cells.

The 10 biggest earthquakes in France since 1900

Here is the list of the ten largest earthquakes using data from the Central Bureau Seismological French that France has ever known. 



1. Lambesc 1909
It is the oldest, but certainly the deadliest since 1900. The epicenter of the earthquake of 6.2 magnitude on the Richter scale, was at Lambesc Bouches-du-Rhône. The earthquake killed 46 people and 250 suffered some serious injuries.  

2. Arette 1967
Except an old woman died after a heart attack because of the earthquake, no casualties were regrettable during shaking. However, the earthquake, magnitude 5.1, caused huge damage. Indeed, a major part of the municipality of Arette was destroyed and it took several years to rebuild.  

3. Annecy 1996
In the Rhône-Alpe area, the earthquake was the largest since the Corrençon in 1962. Despite a magnitude of 5.2 on the Richter scale, the earthquake caused no casualties. It is, however, held on the night of July 14 . 

4. Perpignan in 1996
Like that of Annecy, yet most important in terms of magnitude (5.6), the earthquake Perpignan has killed anyone. Only a few cracks in ceilings, walls or falling tiles were observed.  
5. Southeast of Bonifacio in 2000
Located fifteen kilometers east of the coast of Sardinia and fifty Corsican coast, a 5.3 magnitude earthquake caused no damage in Corsica Commons. Only the cities of Bonifacio and Monacia-d'Aulene felt the vibrations caused by the earthquake. 

6. Hennebont 2002
In this area of ​​Britain, seismic activity is relatively low but remains constant. That is why the earthquake of 5.4 magnitude on the Richter scale, is a rare event in this part of France. 

7. Rambervillers 2003
It is certainly the earthquake that was felt in the largest number of departments. Nearly 40 felt the quake of magnitude 5.4. Germany and Switzerland have also felt their ground vibrate. It caused severe damage but no nuclear Fessenheim, though it was close to the epicenter ... 

8. Roulans 2004
Despite its 300 kilometers, and its tremors felt in Lyon, Belfort, Switzerland or Germany, the earthquake of 5.1 on the Richter scale caused no injuries. However, it caused extensive damage, cracking some building facades. 

9. 100km south-west of Ajaccio
This is the second earthquake at sea and what is more, near Corsica. The vibrations were felt on the west coast of the Island of Beauty, but also on the Côte d'Azur. No damage or injuries, reported. 

10. Barcelonette 2014
To date, he is the last earthquake of magnitude greater than 5 on the Richter scale in France. Several departments have suffered violent vibrations: Savoy in Var, through the Rhone, Isere, Bouches-du-Rhône and Alpes-Maritimes. However, it caused no casualties. 



Introduction to Earth Science

Earth interior

Earth science is about the investigation of planet earth and connection of the frameworks inside. Earth science falls under geoscience as this arrangements about the land and topographical parts of earth. The researchers joined common sciences, material science, science, science and arithmetic to furnish a quantifiableratification of the working of the earth and its upset. Lithosphere, hydrosphere, environment and biosphere are the four circles of earth structuring land, water, air and natural frameworks correspondingly. The sub-classifications of earth science incorporate geophysics, soil science, biology, hydrology and climatic science. 

Earth has an external outside layer, upper and more level mantle, and internal and external center. The major part of the earth is made of rocks, the lithosphere. Tectonic plates, mountain ranges, volcanoes and tremors are itemized by intimating earth outside blueprint. Tectonic plates are discovered in the semi-mantle area and their impact expedites earthquake.the hull liquefies down because of volcanic ejections in this way devastating nature's domain. The earth surface spreads 65-70% of water, which throughout volcanic emission blends with liquid magma to structure robust rocks called molten rocks. Sedimentary rocks are residue of rock particles by weathering and transformative shakes by converting one structure into an alternate (transformation) are the other two significant rocks. Weathering alludes to shake break down and courses through ocean, sea, water momentums and informal lodging far away places. 

Characteristic assets are the every day needs for better living of humanity. Regular fiasco brings about annihilation and harm to life and arrive separately and the explanations are unswerving relationof greenery and biota support by living structures particularly people. Surge and tornados are foreseeable although seismic tremors, volcanoes with wave are erratic characteristic disasters. Minerals are earth's assets that are strong, inorganic, common and concoction structures. Rocks are the mineral masses. Heat, force, disintegration and different drives of earth change the creation of rocks starting with one shape then onto the next and this cycle is alluded to shake cycle. The Earth's climatic changes have dependably been the recognizing element and the progressions happens because of high temperature cool change over. 

Space science and group of stars studies are the mixed fields of earth sciences. From Newton's Law of Gravitation to rocket upset, the trustworthiness of the engineering in conjoining the area and space has been made conceivable. Satellite studies investigate shape, size, and time of planets and stars. National Aeronautics and Space Administration (Nasa) was started in late 1950's by the United States Congress, which cleared path for fathoming all about space. Stars, universes and universe developed the idea of space expressing Universe is everything incorporating matter, energy, space and time. In spite of the fact that Earth science explicates different frameworks of plan.