The development of knowledge of cell biology integrated with those of bioengineering has recently opened new perspectives in the field of tissue engineering has established itself, which proposes the use of the cells in the laboratory for the construction of artificial biological tissues to be used as a substitute for damaged ones in result of disease or trauma. This would help solve the problems of reduced availability of organs for transplantation and the risk of graft rejection derived from the donor. The association of cells with biocompatible and biodegradable materials is leading to the production of engineered tissues transplantable. The actors involved in the scenario biotech tissue regeneration are basically three: the cells, signaling molecules and biomaterials .
To ensure the maintenance of the function of the implanted cells using a material or scaffold that acts as a scaffold to guide the three-dimensional organization of the cells in the final construction. The scaffold , synthetic or natural, must be able to support the growth and differentiation of cells, ie it must recreate the more possible the microenvironment characteristic of the fabric that you want to replace. Once transplanted, it will perform the function of guide in tissue growth, before being completely resorbed. For the preparation of the plant to be transplanted, the cells are derived from a fragment of the healthy tissue of the patient to which you want to reconstruct the damaged tissue; follows the combination between the cells and biomaterial appropriate, in the presence or absence of signal molecules necessary for proper cell differentiation. Recently aroused great excitement in the scientific community as a resource in the stem cell regenerative therapy due to their ability to give rise to different cell types depending on how they are stimulated.